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links between biomarker structure 
and biochemical function. 
Similarly, geologists have much 
to offer evolutionary biology by 
helping constrain the time period 
and physical context of the 
appearance of new life forms.
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The cohabitation of Neandertals 
and modern humans in Europe 
about 35,000 years ago has 
stimulated considerable debate 
regarding hypothetical admixture. 
Recently, sequences of the 
hypervariable region-1 (HVR-1) of 
mitochondrial DNA (mtDNA) from 
9 Neandertal specimens dated 
between 29,000 and 42,000 years 
ago from dispersed locations have 
revealed the genetic diversity 
of Neandertals around the time 
of the cohabitation [1–4]. The 
genetic signatures before and 
after contact with modern humans 
were found to be similar. They 
fall outside the range of modern 
human genetic diversity and show 
no specific affinity with modern 
or Paleolithic Europeans [5]. Such 
observations are generally taken 
as strong evidence for the ‘Rapid 
replacement’ model for the origin 
of modern humans [4,6], though 
further evidence is needed to 
completely exclude admixture [7].

The first presence of modern 
humans in Europe before 35,000 
years ago as well as the survival 
of Neandertals beyond 30,000 
years ago are still controversial 
issues [9]. Our goal was to 
recover a Neandertal sequence 
that unambiguously predates the 
cohabitation period. A comparison 
of this sequence with published 
Neandertal sequences might 
reveal either the long-time stability 
of the Neandertal mtDNA-pool 
or drastic modifications around 
the time of cohabitation. We, 
therefore, retrieved 123 bp of the 
mtDNA HVR-1 from a 100,000 
year old Neandertal tooth from 
the Scladina cave (Meuse Basin, 

Correspondences
 Belgium), which represents the 
most ancient Neandertal sample 
analyzed at the DNA level. 

The experiments were 
conducted in a specific 
laboratory respecting the current 
authentication standards [10]. The 
extract was treated with uracil 
DNA-glycosylase (UDG) to excise 
deaminated cytosines formed 
after death, because they lead to 
artefactual GC→ AT polymorphisms 
during PCR [11,12] and have 
already been shown to be present 
in sequences from Scladina fossils 
[13–15]. We took advantage of 
previously reported Neandertal 
sequences to design primers 
that favor the amplification of 
Neandertal DNA. PCR was never 
successful when fragments 
larger than 173 bp were targeted 
(Supplemental Data). We amplified 
four fragments spanning in total 
221 bp of the HVR-1. Each PCR 
product was cloned and the final 
sequence was deduced from the 
consensus of 61 clones. Each 
position was found in at least two 
amplification products, except for 
the first 39 and last 59 nucleotides 
for which PCR replication was 
not possible. These nucleotides 
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described among Neandertals. 
The Scladina sequence extends 
the level of diversity as it exhibits 
three additional transitions 
compared to other Neandertal 
sequences (Figure 1).

Sequence comparisons were 
conducted with the 171 human 
HVR-I sequences used in [7] as 
a representative subset of the 
overall human diversity. We chose 
the best-fitting phylogenetic 
model (among 56) by MODELTEST 
(Supplemental Data) according 
to the Akaike criterion. The 
resulting model (HKY+G+I 
or HKY+G depending on the 
inclusion of 8 chimp sequences 
as an outgroup or not) accurately 
estimates nucleotide substitution 
parameters and takes into 
account rate heterogeneity among 
sites (as suggested in [7], but 
lacking in previous phylogenetic 
analyses involving Neandertals 
[1–4]). When chimpanzee 
sequences are used as outgroups, 
the Neandertals appear as 
monophyletic (bootstrap support 
72.3%). When chimpanzee 
sequences are excluded, the 
Scladina sequence still clusters 
with other Neandertal sequences 
(bootstrap-support 96.5%), 
excluding all human mtDNA 
lineages. This demonstrates 
that attraction of Neandertal 
sequences by chimp sequences 
does not account for the observed 
topology as suggested in [7].
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contribution to early modern humans. 
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